The Waterjet Control: Inside the Brain Behind a Waterjet

In 1984 the abrasive waterjet was released as a commercially available product. It was powerful, it was incredibly versatile; but it took a special operator to run it.  Someone who was into it – who had caught the waterjet bug. Why? Because at the time, waterjet wasn’t all that easy to run.

I had the unique opportunity to be such a waterjet operator by getting into abrasive waterjet just one year after it was released.  While in undergrad and grad school running the waterjet laboratory and demo center I could reference basic cut speed tables for what was believed (at that time) to be the best operating parameters. The table included water pressure, orifice size, mixing tube size, abrasive size, abrasive flow rate and the maximum cut speed for a dozen common materials at one or two thickness levels.

How Waterjets Work Programming Waterjet Technology Overview
Dynamic Waterjet

Dynamic Waterjet: The Story of a Problem Worth Solving

Taper left on a part was by far the biggest complaint from our customers across the world. As we have learned in prior posts, the faster you cut through a material with an abrasive waterjet, the greater the v-shaped taper. At the time, the only solution was to slow down your cut speed. The problem was, slowing down only minimized the taper – but rarely get rid of it; and slowing down costs shops a lot of money per part.

Waterjet Technology Overview

Fixture Well, And Often

Everyone who cuts parts out of raw stock or a work-piece knows you can’t cut a good part if it isn’t sufficiently held in place. So, what do we have to consider when we’re talking about waterjet cutting? The good news is a waterjet cuts with low force. Where a milling machine might force a rigid cutting tool into a material at 10, 100, 300 pounds of force (4.5, 45, 136 kg), the waterjet head doesn’t touch the part — just the supersonic stream that exits the head touches the part.The machine can’t tell if the jet is cutting material or just shooting into nothingness. The part, however, does feel low forces during cutting.


Although the picture is of pure waterjet cutting pizza, I’m going to focus on abrasive waterjet cutting applications in this post. Fixturing requirements are different in pure waterjet cutting, partially because the material is often very light and the jet forces are an order of magnitude (10x) lower compared to abrasive waterjet.

Waterjet 101 Waterjet Jobs

So, What Is Stream Lag & Taper?

A waterjet stream acts like a beam when cutting, much like plasma cutting and laser cutting. These types of non-rigid cutting tools have to address the beam flexing and changing within the target material to minimize part cutting errors.

What is taper?

Taper in waterjet cutting is when the entrance width of cut is different than the exit width of cut.


What is stream lag?
Stream lag causes corner damage when the exit point lags behind the entrance point, shown in the bottom of the part below.

Plasma cut parts often exhibit an upside-down V-shaped taper where the width of cut is wider at the bottom. Laser and waterjet exhibit a normal V-shaped taper (more narrow width of cut at the bottom). Plasma, laser and waterjet can all yield stream lag errors when cutting a part.

How Waterjets Work Waterjet 101 Waterjet Technology Overview

Debunking Common Misconceptions about Waterjets {Part 1 of 2}

What did you say?

I can’t say I’ve heard them all, but I’ve heard a bunch of them: strange misconceptions about waterjets.

It’s not surprising.

After all, we are cutting with a supersonic waterjet stream (often with a garnet sand added to it) and yet it can cut through a foot thick (300 mm) of metal. People say, “No it can’t!” Actually, yes it can.

How Waterjets Work Waterjet 101