Waterjet Cut Urethane Parts

Waterjet cutting is widely known for its ability to cut virtually any material to near net shape. These materials vary from rubber to plastics, composites to metals. Versatility is a benefit waterjet cutting brings to many businesses, including New Hampshire based company, Plan Tech. Plan Tech has been manufacturing urethane parts for over 30 years, providing products for diverse groups of industries. Urethane is a high-performance rubber that can be molded easily, shaped accurately, and offers many different finishing options. We’ve invited guest blogger Kevin Healy, Vice President of engineering at Plan Tech, to tell you more about how waterjet cutting has impacted their productivity. With their vast experience and in-house capabilities, they consistently deliver tight tolerance custom urethane parts.

Manufacturing Trends Waterjet Technology Overview

Tough Applications Where Waterjet Shines

It is true that waterjets are used for common materials such as steel, aluminum, gasket, and foam. But many people feel the tougher applications are where waterjet really shines. In this post I’ll highlight some that I believe best illustrate waterjet and abrasive waterjet capability.

  1. Stone
  2. Composites
  3. Exotic metal: Titanium and Inconel
  4. Thick insulation
  5. Cement board

The first three are abrasive waterjet related, and the last two use pure waterjet.

Waterjet Jobs

Impact of Grit Size on Abrasive Waterjet Cutting

Garnet abrasive is used on 95% of all waterjet machines. The size of the garnet abrasive typically used today for waterjet cutting ranges from 50 mesh to 220 mesh, with the most common being 80 mesh. Mesh values do not represent particles of an exact dimension, but represent a distribution of particle sizes. An 80 mesh abrasive will have some particles larger and smaller than exactly 80 mesh. Mesh sizes are usually determined by allowing abrasive to fall through a series of screens – each screen smaller in mesh size from top to bottom. A known quantity of abrasive is placed on the top and vibrated for a fixed period of time, and then the amount of abrasive on each screen is weighed to obtain the distribution.

How Waterjets Work Waterjet 101 Waterjet Technology Overview
A child working in the FlowCut program

Anyone Can Program a Waterjet

A waterjet is a beam type cutter, somewhat like a plasma, oxy acetylene, CO2 laser, or fiber laser. Programming a waterjet, and operating one for that matter, is actually simple. In fact, a waterjet is usually considered to be easier to program and operate than most other machine tools. I say this because a waterjet typically does not require a change in parameters when going from one material to another.  The tool is non-contact, pierces material easily to start a cut, and cuts without heat so materials don’t change or warp from the cutting process. If you are newer to this blog, a previous article  on what makes up a waterjet might be a good precursor to reading this post.

Programming Waterjet 101

Fixture Well, And Often

Everyone who cuts parts out of raw stock or a work-piece knows you can’t cut a good part if it isn’t sufficiently held in place. So, what do we have to consider when we’re talking about waterjet cutting? The good news is a waterjet cuts with low force. Where a milling machine might force a rigid cutting tool into a material at 10, 100, 300 pounds of force (4.5, 45, 136 kg), the waterjet head doesn’t touch the part — just the supersonic stream that exits the head touches the part.The machine can’t tell if the jet is cutting material or just shooting into nothingness. The part, however, does feel low forces during cutting.

Cutting-pizza

Although the picture is of pure waterjet cutting pizza, I’m going to focus on abrasive waterjet cutting applications in this post. Fixturing requirements are different in pure waterjet cutting, partially because the material is often very light and the jet forces are an order of magnitude (10x) lower compared to abrasive waterjet.

Waterjet 101 Waterjet Jobs

So, What Is Stream Lag & Taper?

A waterjet stream acts like a beam when cutting, much like plasma cutting and laser cutting. These types of non-rigid cutting tools have to address the beam flexing and changing within the target material to minimize part cutting errors.

What is taper?

Taper in waterjet cutting is when the entrance width of cut is different than the exit width of cut.

Taper_v2

What is stream lag?
Stream lag causes corner damage when the exit point lags behind the entrance point, shown in the bottom of the part below.

Plasma cut parts often exhibit an upside-down V-shaped taper where the width of cut is wider at the bottom. Laser and waterjet exhibit a normal V-shaped taper (more narrow width of cut at the bottom). Plasma, laser and waterjet can all yield stream lag errors when cutting a part.

How Waterjets Work Waterjet 101 Waterjet Technology Overview